As an example, suppose we wish to fit a gamma density to the durations (in minutes) of a group of cell phone calls.
12.2 0.9 0.8 5.3 2.0 1.2 1.2 1.0 0.3 1.8 3.1 2.8
Here is the R function that computes the log posterior of the density:
gamma.sampling.post1=function(theta,data)
{
a=theta[,1]
b=theta[,2]
n=length(data)
val=0*a
for (i in 1:n) val=val+dgamma(data[i],shape=a,scale=b,log=TRUE)
return(val)
}
The first figure is a contour graph of the posterior density of (alpha, beta). (In R, beta is called the scale parameter.)

Instead, suppose we consider the joint posterior of alpha and the "rate" parameter theta = 1/beta. Here is a contour plot of the posterior of (alpha, theta).

Last, suppose you consider the joint posterior of alpha and the mean mu = alpha beta. The last figure displays the posterior of (alpha, mu).

No comments:
Post a Comment